Solar Panel Feed In Tariff Update (FIT)

From http://www.building4change.com/page.jsp?id=1305

The tariff for a small domestic solar installation will be 16p per kilowatt hour, down from 21p, and will decrease on a three-month basis thereafter, with pauses if the market slows. All tariffs will continue to be index-linked in line with the retail price index (RPI) and the export tariff will be increased from 3.2p to 4.5p. The new tariffs are expected to give a return on investment (ROIs) of more than 6 percent for most installations, and up to 8 percent for the larger bands.

The scheme lifetime will be reduced from 25 years to 20 years for new solar installations.

FIT changes

  • Tariffs for solar PV installations from 1 August to be 16p/kWh for household scale solar PV installations. Tariffs for larger installations are also to be reduced
  • Multi installation tariff will be increased to 90 percent of standard tariff. Organisations with more than 25 PV installations will get 90 percent of the standard applicable tariff, increased from 80 percent
  • Average tariff reductions of 3.5 percent every three months. Reductions will be bigger (up to 28 percent) if there is rapid uptake.
  • Tariff cuts will be skipped (for up to two quarters) if uptake is low. Uptake in three different bands (domestic (size 0-10kW), small commercial (10-50kW) and large commercial (above 50kW and standalone installations) will determine the quarterly reductions within those bands.

Rooftop Hydroponic AND Fish Farm anybody ?

Treehugger.com had an article on this prototype system that combines hydroponics and a fish farm into one unit for all year round veggies and a few fish.

The prototype Globe/Hedron “is a bamboo greenhouse designed to organically grow fish and vegetables on top of generic flat roofs. The design is optimized for aquaponic farming techniques: the fish’s water nourishes the plants and plants clean the water for the fish,” according to designer Antonio.

Recycled Foamed Glass Insulation

28 May 2012 Update:

I put a post on greenbuildingforum.co.uk and the consistent reply is that it’s more expensive than well used and well know Leca, which is usually used with a breathable Limecrete floor. I’m not sure if it’d work / work as well under a non breathing floor.

http://www.greenbuildingforum.co.uk/forum114/comments.php?DiscussionID=9113&page=1#Comment_147104


I was at a Green Building show / expo / day at the Eden Project last week and there was a talk by a German sounding chap, who is part of the UK Epoc Europe Ltd team promoting / pushing their TECHNOpor (Recycled Foamed Glass).

The key points seemed to be:

  • uses 100% (or close to 100%) recycled materials (glass bottles etc.)
  • German factory is powered by HEP electricity.
  • light to transport on low emmisions trucks from Germany.
  • easy to work with.
  • good insulation values for under the floor, behind retaining walls.
  • can even be used for between floor and in ceilings insulation (as super light).

I’ve found 2 UK Websites related to this:

The German site for TECHNOpor is http://www.technopor.com/English/Granulat/

The Swiss site has a great idea of using bags for when you use the Recycled Foam Glass to insulate a wall. Given that there will be 2 retaining walls, this could be great.

From www.misapor.ch:

UK Government delay Feed In Tariff Cuts

At yesterdays Green Building Event at the Eden Project the news came through (Tweet feeds) that Greg Barker, the UK government energy and climate change secretary tweeted:

“Having listened carefully to industry, we are looking at scope for pushing back a little the next proposed reduction in the solar tariffs.”

They were due to be cut in July from the current 21p per Kw.

If you have / get solar panels there are several return on investment streams:

  • Generation tariff – your energy supplier will pay you a set rate for each unit (or kWh) of electricity you generate. Once your system has been registered, the tariff levels are guaranteed for the period of the tariff (up to 25 years) and are index-linked. For a full list of generation tariffs, see FIT payment rates published by Ofgem
  • Export tariff – you will get a further 3.2p/kWh from your energy supplier for each unit you export back to the electricity grid, so you can sell any electricity you generate but don’t use yourself. This rate is the same for all technologies. At some stage smart meters will be installed to measure what you export, but until then it is estimated as being 50% of the electricity you generate (so that if your solar PV system is less than 30kWp you do not need to have an export meter fitted)
  • Energy bill savings – you will be making savings on your electricity bills , because generating electricity to power your appliances means you don’t have to buy as much electricity from your energy supplier. The amount you save will vary depending how much of the electricity you use on site.

One of the Eden Project show talks had these figures, that may be high end in terms of them being from a chap that is from a PV installation company.

The Energy Saving Trust has figures of:

A typical domestic solar electricity system with an installation size of 3kWp could earn:

  • £530 a year from the Generation Tariff
  • £40 a year from the Export Tariff
  • £100 a year reduction of current electricity bills

Scaling this up to a 4kWp system that’d be £893.

Being fair to Tony at Cornwall Solar Panels (Tel 01872 562 775) who gave the above figures, his entire talk was centred around there being no such thing as the best solar panel, but the best solar panel configuration for a particular situation. Panel efficiency, shape, size, drop off with heat, drop off with shading, the roof angle and a bunch of other variables (string or per panel inverters) all influence the efficiency and the system cost and so the Return On Investment (ROI). His talk went over about a dozen different installations they’ve done and have figures from. The clear implication / impression is that they are doing installations all over Cornwall.

 

Carbon negative bricks !

Carbon negative bricks showcased prior to market launch

From: http://www.building4change.com/page.jsp?id=1276

Encos uses recovered aggregates and vegetable oil to make sustainable bricks

Encos’ carbon negative bricks and brick slips are set to come to market soon and are on display this week at the Greenbuild Expo 2012 show, which takes place on 9 and 10 May in Manchester.

The bricks and brick slips are made from a combination of recovered aggregates and vegetable-oil-based binders. They are manufactured using a patented method based on research carried out at the department of civil engineering at the University of Leeds by Dr John Forth into the use of alternative binders in construction materials. The process consumes no water, and produces no waste.

Encobricks and Encoslips will be the first Encos products to come onto the market. Prototype products manufactured at the company’s pilot plant have been subjected to comprehensive testing at BRE and have met the standards for fire resistance, freeze-thaw and compressive strength. The products have already been used successfully in the construction of test walls.

Environmental impact

Encos says its bricks use 80 percent less energy to make than clay bricks, and as a result produce only 30 kg CO2e per ton of product. In addition, the plants that produce the vegetable oils used in the Encos binder take in CO2.For every ton of Encos product, 70 kg of CO2 is sequestered within the binder.

But looking at their site, these aren’t yet in commercial production 🙁

“A scale production plant is now fully designed with production planned for mid 2013.”
http://encosltd.com/products/production/

Construction (embodied) Energy Vs Operational Energy

My Summary / Conclusion

  • In 2007, 16% of CO2 equiv impact is construction of a building, 84% is operational / in-use.
  • Today the split is roughly 20% embodied and 80% operational.
  • The modelling shows that we are moving to a CO2eq (CO2 equivalent) of 38/62% for masonry construction, and 35/65% for timber-frame construction.
  • No significant differences emerged between masonry and timber construction in terms of overall CO2 impact over the 60- and 120-year study periods. The largest difference observed between comparable masonry and timber constructions was 4%.
  • No clear / significant impact of thermal mass.
  • Emissions are cumulative, so 1 tonne of CO2 equiv at the point of construction roughly equals a tonne of CO2 equiv during the 60 year life of a building.

Which aspects of a dwelling are responsible for the largest CO2 impact?

  • Space and water heating have the largest CO2 impact in dwellings.
  • Appliances also have a large operational CO2 impact.
  • In both masonry and timber constructions, the impact of foundations and ground floors dominates the embodied CO2eq impact.
  • In masonry construction, the external walls also have a major impact.
  • Other elements, such as windows/doors and floor finishes, have a relatively large impact because they are repeatedly replaced throughout the life of the dwelling.
    • Waste water heat recovery systems have a 60 year assumed life span (windows and doors – 40, MVHR 15, flooring 10 ….)
  • The embodied impact of services was found to be approximately 5% of impact at 60 years and 7% at 120 years.

Construction Vs Operational Energy

I’ve come across some interesting figures and links to research in an article in the Green Building Magazine (by www.greenbuildingpress.co.uk).

  • Embodied Energy – a ticking time bomb (Spring 2012)

In 2007, around 16% of the CO2 equivalence impact was constructing a building.
– This covers the manufacture of materials and components, transport and construction.

84% of the CO2 equivalence impact of a building was down in use emissions.

This data is from http://www.bis.gov.uk/assets/biscore/business-sectors/docs/l/10-671-low-carbon-construction-igt-emerging-findings.pdf

That is why policy to date has been biased to making buildings more operationally efficient.

The article then makes the point that raises the importance of embodied (construction) emissions. Namely that since emissions are cumulative, 1 tonne of CO2 equivalence impact occurs for every year this “CO2” is in the atmosphere. So 1 tonne of CO2 at the start of a buildings 60 year life will have twice the impact of 1 tonne emitted during the building’s life.

The longer a tonne of CO2 hangs around in the atmosphere, the more damage it can do.

So it’s potentially dangerous to focus on carbon-intensive solutions that are installed at the point of construction, so that they reduce the operational emissions.

So, it is best to look for principles, materials, solutions etc. that will reduce both the construction (embodied) and operational energy of a building. So, as it’s often said, the general advice is still to optomise the fabric efficiency of a building before other measures.

October 2011 Update

The October 2011 report by the NHBC Foundation (“Housing Research in partnership with BRE Trust”) – Operational and embodied carbon in new build housing – A reappraisal:

Until now, focus has been almost entirely on the carbon emissions resulting from using homes, but clearly the balance between those operational carbon emissions and emissions from producing and installing the materials – the embodied carbon – needs to be considered.

This publication explores a subject which has to date lacked a strong and accessible evidence base. It looks at a range of carbon reduction scenarios as delivered through typical house types and estimates the likely impact both in terms of operational and embodied carbon – providing an insight into the contribution of different technical responses to the low carbon agenda, including the balance between operational and embodied carbon.

Evaluated Scenarios:

Twenty-four scenarios were appraised, using SAP software to determine operational CO2 emissions and BRE Global’s Environmental Profile methodology to analyse embodied CO2eq emissions.

The research considered the following variables:

  • two built forms (detached and mid-terraced)
  • two construction weights (masonry and timber frame)
  • three operational CO2 performance levels (25, 31 and 40% reductions over Part L1A 2010)
  • two dwelling lifespans (60- and 120-year study periods)
  • varying grid electricity CO2 intensity (to account for the expected impacts of grid decarbonisation).

Extracts from the report:

  • The modelling showed a typical percentage split between operational and embodied CO2eq (CO2 equivalent) of 62/38% for masonry construction, and 65/35% for timber-frame construction. These are averaged figures.
  • No significant differences emerged between masonry and timber construction in terms of overall CO2 impact over the 60- and 120-year study periods. The largest difference observed between comparable masonry and timber constructions was 4%.
  • The modelling showed that space and water heating, along with foundations, ground floors, windows/doors and floor coverings, were the largest contributors to overall lifetime CO2 impact. Appliances were also a significant contributor, but building designers have limited opportunity to reduce these emissions via their designs.
  • The typical split between operational and embodied CO2eq in new build housing has been taken as 80% operational, 20% embodied, a position largely confirmed by recent studies[1]. However, within the context of future Building Regulations requirements – which are expected to tighten to the point that new homes will be significantly lower in CO2 from 2016[2] – operational CO2 emissions are set to fall radically. This means that embodied CO2eq emissions will become increasingly significant in terms of the percentage they contribute to the overall CO2 impact of new build dwellings. In addition, typically the more energy efficient a given house type becomes, the greater the quantity of additional materials required to construct it (eg additional insulation, more services). There is also potential that such additional materials (eg renewable generation installations) may have particularly high embodied CO2eq levels. Both these considerations suggest that, as operational CO2 emissions reduce, embodied CO2eq emissions will increase.
  • The replacement of services and other building components has a direct bearing on both operational and embodied CO2eq emissions across the 60- and 120-year study periods.

Assumed lifespan of construction elements:

  • The proportion of embodied CO2eq in masonry construction was found to be higher than that in timber construction. However, this difference was relatively marginal, the maximum difference being 4%. This is because, other than the walls, the majority of building elements were similar in both the masonry and timber constructions modelled.

Which aspects of the dwelling are responsible for the largest CO2 impact?

  • Space and water heating have the largest CO2 impact in dwellings; this remains significant in all scenarios despite diminishing slightly as designs move from 25 to 40% CO2 reduction.
  • Appliances also have a large operational CO2 impact, although dwelling designers have limited ability to help achieve reductions in this area.
  • In both masonry and timber constructions, the impact of foundations and ground floors dominates the embodied CO2eq impact.
  • In masonry construction, the external walls also have a major impact.
  • Because both of these areas will last the lifetime of the dwelling, they should be considered at the design stage when seeking to reduce the overall dwelling CO2 impact.
  • Other elements, such as windows/doors and floor finishes, have a relatively large impact because they are repeatedly replaced throughout the life of the dwelling.
  • The embodied impact of services was found to be approximately 5% of impact at 60 years and 7% at 120 years. However, these results should be treated with caution as some aspects, such as controls, had to be omitted due to lack of available data, and the services were not studied in depth during this project.

Did the varying thermal mass levels have a significant impact on cooling?

  • No clear trend was identified from the modelling carried out, with minimal impact from space cooling in both masonry and timber designs.

Cement production CO2 to fuel !

Pond Biofuels Takes CO2 From Cement Kiln, Grows Algae And Turns It Into Biofuel, that then feeds the cement Kiln’s 🙂

http://www.treehugger.com/renewable-energy/pond-biofuels-takes-co2-cement-kiln-grows-algae-and-turns-it-biofuel.html?campaign=daily_nl

To make cement, you cook calcium carbonate at high temperature, producing 4% of the world’s carbon dioxide in two ways: through the fuel used to heat the kiln, and through the chemistry of converting calcium carbonate to lime and carbon dioxide.

But as climate skeptics are so fond of telling us, plants love CO2. So Pond Biofuels set up shop next to St. Mary’s Cement and feeds gases from its stack to algae taken from the nearby Thames River. The algae grows in its algae condos, sucking up sulphur and CO2 and emitting oxygen.

The algae is then harvested, dewatered and processed. It can be turned into100 litres of biofuel per tonne of algae, or as is being done at St. Mary’s right now, fed back into the cement plant to replace coal or coke.

UK Solar Hot Water Trial Findings

The Energy Saving Trust did a survery on a large number of UK and Republic of Ireland solar hot water systems.

PDF report on the survey >>

Key Points

  • There were 54 flat-plate systems in the trial.
  • There were 34 evacuated-tube systems in the trial.
    • There was no difference in the annual solar energy yield observed between solar installations using flat-plate solar collectors and those using evacuated-tube solar collectors. This may be because although evacuated-tube collectors have higher insulation, flat-plate solar collectors generally have a larger working area as a proportion of the collector size.
So there are none of the “new” Thermodynamic Panels in the survey. These do appear to be different and better. Providing 24 hour hot water.

Distribution of the surveyed / trial locations:

So for Silver Spray in Cornwall, should get better results as more sunshine:

The solar energy input to the hot water cylinder is at a maximum in summer, with back-up heating providing more energy in the winter months.

It’s key to set the backup (non solar) heating system to run so that the solar heating can be most effective and the house occupants have hot water when desired.

How to improve the performance of a solar water heating system:

  • Using boiler timers and/or solar controllers to ensure that water is only heated by the back-up heating sources after the water has been heated to the maximum extent possible by the sun.
    • Timing of back-up heating and hot water use. Systems
      provided more energy when the back-up heating was
      used just before the main hot water use or at the end of
      the day. This provides a better opportunity for the solar
      collector to heat the water rather than using the back-up.
  • Having an adequately sized dedicated solar volume (that is, a portion that can only be heated by the solar water heating system). Where a dedicated solar volume is not used (for example in systems that do not require the existing cylinder to be changed), the timing of back-up heating has a particularly important impact on performance.
  • Insulation is a vital part of this, as systems with poorly insulated storage cylinders can suffer from inadequate hot water provision in the mornings.

Key Findings:

  • Well installed and properly used systems can provide around 60% of the years hot water.
    • Across the whole trial, the proportion of domestic hot water energy provided by solar power ranged between 9 per cent and 98 per cent (with a median of 39 per cent).
  • Plenty of other findings, see the report.

Customer / Consumer Advice

What to expect from your installer:

  • All MCS installers should be able to provide a detailed breakdown of the specification and costs of their proposed system. They should:
    • Complete a technical survey.
    • Explain how they calculated the size of the system to be appropriate for your hot water usage.
    • Provide an estimate of how much heat will be produced by any proposed system.
    • Supply clear, easy-to-understand and detailed information and advice on how best to use the system and operating instructions.
    • Explain how the system will be installed and if there will be any disruption to your property.
    • Install and set controls and settings to ensure you get the most out of your solar water heating system.
    • Provide clear and easy-to-understand information on product and workmanship warranties.

EcoBuild: Toilets (waterless urinal & sensor on water tap)

Two toilets and a commercial tap sensor stood out at the Ecobuild expo:

One of the efficiency and eco objectives is a house that is water efficient.

Two slides, from different sources on domestic water use / water consumption:

My initial straw polling, is getting a strong reaction to the idea of a urinal, let alone a waterless urinal, from  at least 50% of the girls reacting!

Waterless Urinal

This has the potential to drastically reduce the amount of water used in the house.

They are marketed as “clean, green, odour free and waterless”.

I had it all explained to me on the Odourwise and Twyford stands. The module that fits into the bottom of the urinal converts all uric acid to a form that prevents lime scale, clogging up the system, takes away the smell etc. It seems that urine and water are a big source of limescale and other loo waste pipe problems, hence trying to dilute this away with (usually) lots of water.

All you need to do, is a few times a year (depending on use levels) replace the cartridge. In this photo the plastic bit on the top is the device to extract the Odourwise bit so that it can be replaced with a new cartridge.

A google search reveals there are a few alternatives, so more research needed.

My current thought is a urinal in the bathroom  off the main living area and also one in the bathroom off the study.

Also on show at Ecobuild 2012 will be the Odourwise™ Waterless urinals. Twyford Bathrooms offers the revolutionary Odourwise™ Waterless system for two of its urinal ranges, Centaurus and Galerie Plan. Centaurus is the first hybrid urinal that is truly waterless, combining maximum water savings with enhanced hygiene. The cutting-edge Odourwise™ Waterless technology requires neither chemicals nor electricity, keeping it eco-friendly as well as economical. The urinal is also entirely rimless, making it easy to clean (both within and outside the bowl). Installed with the Odourwise™ Waterless system, Galerie Plan offers the same cost-effective and eco-friendly benefits as Centaurus.

Toilet Sink Taps to be Sensor Driven?

Why use your hands to touch the tap to get the water flowing, before you’ve washed your hands ?

Why have the water running when hands aren’t beneath the taps ?

I need to check out the cost and any other implications. I assume they use a tiny amount of electricity, but best to check.

Combine the Sink and Loo ?

This great combined unit captures (there is an optional bypass if you don’t want it to, eg if you’ve cut your hand) the water you use to wash your hand and then stores this to flush the loo. Integrated 1 unit grey water system.

BUT, £2,500 !!!!!

I’m pretty sure I can have an entire house grey water system for a similar amount.

 

EcoBuild: Thermodynamic Panels (Heat Exchanger)

Thermodynamic Panels

These black panels were on display:

http://www.thermogroupuk.com/thermodynamic.html

These black aluminium panels have refrigerant fluid pumped into them. The heat absorbtion of the black panels changes this to a gas, that is sent to a compressor, which releases heat energy in the heat exchanger where the heat goes into the water. The gas then goes through an expansion valve, putting it back to a liquid before it goes back to the panel. (See explanation & figures below forum comments below).

Claims:

  • 55 degree C water output.
  • Can provide 100% of hot water and heating, 24/7, 365 days a year.
  • Works day or night, as it absorbs heat energy from the atmosphere. It is presumeably helped when it’s sunny !
  • Works when temps are down to -15 degrees C
  • Can be wall installed, which would work well for the Silver Spray proposal.
  • Co-efficient (COP) rating of 4.5 to 7.
  • Distributed by Jewson.
  • 1 panel system (with the boiler and reverse refrigeration bits) is about £4,500.
  • Can have multiple panels in a “toast” stack. Expo figure for that was about £6,500.

Forum Comments:

http://www.greenbuildingforum.co.uk/forum114/comments.php?DiscussionID=7740&page=1#Item_0

  • “Looks like it’s a heat pump with a solar-assisted air to liquid heat exchanger on the outdoors end.” seems to sum it up pretty well !
  • “depending on the heat pump, it’ll be better (better COP) than an ashp in sunlight, but probably worse at night unless there’s much wind to move air across it, although it will have a bigger surface area than in most ASHP’s which will compensate for this to some extent. “
  • “It also has the advantage of not needing (potentially noisy) fans”

Also from the forum, from their N. Ireland distributor:

The system is not new technology; it is basically a freezer “in reverse” and like a freezer consists of a heat collecting panel(s), refrigerant piping and an integrated electric heat pump.  It is a clever application of well tried and tested technology that has been around for almost 100 years.  The panels are made from weather protected anodized aluminium and are not vulnerable to extremes in hot or cold. They are light, weighing only 8 Kg and may be mounted in virtually any orientation or angle.  It has been estimated that 25% of the energy absorbed by a panel comes from solar irradiation, the balance taken from air and rain. Both sides of the panel are available to collect energy. The company that manufactures the system is based in Portugal and to meet growing global demand they have just built a second factory reflecting their 25 year history of success with the product.

You can check them out at http://www.energie.pt/?cult=uk

The Energie system is fully scalable from 1 – 2 panels for domestic hot water, to 4 – 24 panels for central heating right up to 40 panels for large volume hot water requirements. Note that additional panels simply mean faster water heating times, not higher water temperature which is set to between 55 and 60 C maximum.  A typical domestic installation for domestic hot water will have a 250L cylinder with a single panel mounted on the roof.

The heat pump is integrated directly into the Energie cylinder so an existing hot water cylinder cannot be used in this configuration. For central heating and large volume hot water requirements the heat pump (Solar Block in Energie speak) is a stand-alone device. Energie cylinders are either stainless steel or enamelled steel and can come with an additional coil for connecting into a backup heat source if desired. Sizes range from 200L to 6,000L.

All Energie Thermodynamic Systems are accredited under the MCS scheme.

The system uses 407A refrigerant and doesn’t need topping up. The only maintenance may be the occasional replacement of the sacrificial anode in the cylinder should you live in an area with soft water.

Another point raised concerned the panel frosting over in winter. This is possibly best addressed by personal experience.  I installed a 300L single panel system in my home at the start of this year, and although there was some frosting in the very cold weather at that time on the top surface of the panel, the bottom side was clear, and we always had enough hot water. Eight months later we have never had call to revert to either our central heating boiler which has been turned off these past 5 months, or the small integrated immersion that comes with the Energie cylinder. I estimate from measurements I have taken that the Energie system has used an average of 3.6 KWh of electricity per day over the 8 months January to August for our 4-person household at a COP of just over 3.

Hundreds of Energie systems have been installed successfully throughout Ireland over the last 4 years and having come through last winter are well tested for the vagaries of the UK and Irish climate.

Finally some additional information as supplied by Energie can be found using the link below. http://www.e3renewables.com/downloads/

More Information from ThermoGroup

From:

www.thermogroupuk.com/thermogroup_pdfs/Thermodynamic%20Technical%20Information.pdf

1. Aluminium Panels
Refrigerant fluid circulates through the panels and absorbs heat energy from the atmosphere. This increase in temperature changes the fluid into a gas.

2. Compressor
The gas then passes through a compressor and the temperature increases.

3. Hot Water Cylinder
The hot gas then flows through a heat exchanger in the Thermodynamic Block which transfers the heat into the water, which can be used for sanitary hot water, space heating or larger applications such as swimming pools.

4. Expansion Valve
The gas then passes through an expansion valve, reverts back to a liquid and flows back to the panels to
repeat the process.

Figures for Thermodynamic Atmospheric Energy Panels

I read or heard at the show, that increasing the number of panels increases the speed at which the system works. So I think you could add a panel to make the system work faster at grabbing the optimum conditions? (Need to ask them)

Air Source Heat Pump Vs Thermodynamic Atmospheric Energy Panels:

 Air source heat pumps  Thermodynamic
• COP of around 4
• Outputs of 6-18kW
• Outdoor noise pollution
• Requires regular maintenance
• Efficient to just below 0 degrees C
• Fixed sizes
• Fan assisted, low active surface area
• COP of up to 7
• Outputs of 1.7 – 53 kW
Silent outside
• Only one moving part
• Works down to -15 degrees C
• Total flexibility
• Active surface area of 3.2m2 per panel
 Standard Solar Thermal Panel  Thermodynamic
• Provides up to 70% of your hot water
• Must be mounted south facing for best results
• Needs backup from a boiler or immersion heater
• Needs sunlight – low performance in winter/night
• Can only assist central heating
• Fragile glass panels
• Provides up 100% of your hot water.
• Can be mounted south/west/east/north on a wall
• No backup required – Not connected to boiler
• Works in the dark and down to -15OC – 24/7
• Can provide 100% of your central heating
• Aluminium – tough, long lasting, anti corrosive
They can work on a north facing wall, but work best the more direct solar exposure they get.

Case Studies and Cost

Running Cost:

From www.thermogroupuk.com/thermogroup_pdfs/Thermodynamic%20Case%20Studies.pdf:

  • 4 bed house, one panel & 280 L cylinder, for hot water only = £109.50 pa
  • 3 bed house, 6 panels & thermodyanmic block for central heating only = £346.75 pa

So how much would a central heating and hot water system cost per annum ?
– those figures have an assumed electricity tariff of £0.14/kWh. If the system is part driven by my own solar panels, the cost would be reduced (although you need to factor in the capital cost of the solar panels.)

Purchase Cost:

Need to add in the cost of having it all installed and signed off to the level that’ll hopefully get the Renewable Heat Incentive.

From www.thermogroupuk.com/thermogroup_pdfs/Thermodynamic%20Kit%20Retail%20Prices.pdf

Thermodynamic kits ship pre-gassed, ready for installation and include the following:

  • Thermodynamic Panels/s
  • Panel Fixing Kit
  • Hot Water Cylinder with Thermodynamic Block
  • 30m Copper Pipe
  • 30m Low-loss Lagging

The above thermodynamic kits are suitable for supply of sanitary hot water in domestic applications. Thermodynamic systems for Ambient heating or larger applications require a more detailed specification to ensure we provide you with the right solution.

I’ve emailed them for a rough quote.